Abnormal renal, hepatic, and muscle glucose metabolism following glucose ingestion in type 2 diabetes

Am J Physiol Endocrinol Metab. 2004 Dec;287(6):E1049-56. doi: 10.1152/ajpendo.00041.2004. Epub 2004 Aug 10.

Abstract

Recent studies indicate an important role of the kidney in postprandial glucose homeostasis in normal humans. To determine its role in the abnormal postprandial glucose metabolism in type 2 diabetes mellitus (T2DM), we used a combination of the dual-isotope technique and net balance measurements across kidney and skeletal muscle in 10 subjects with T2DM and 10 age-, weight-, and sex-matched nondiabetic volunteers after ingestion of 75 g of glucose. Over the 4.5-h postprandial period, diabetic subjects had increased mean blood glucose levels (14.1 +/- 1.1 vs. 6.2 +/- 0.2 mM, P < 0.001) and increased systemic glucose appearance (100.0 +/- 6.3 vs. 70.0 +/- 3.3 g, P < 0.001). The latter was mainly due to approximately 23 g greater endogenous glucose release (39.8 +/- 5.9 vs. 17.0 +/- 1.8 g, P < 0.002), since systemic appearance of the ingested glucose was increased by only approximately 7 g (60.2 +/- 1.4 vs. 53.0 +/- 2.2 g, P < 0.02). Approximately 40% of the diabetic subjects' increased endogenous glucose release was due to increased renal glucose release (19.6 +/- 3.1 vs. 10.6 +/- 2.4 g, P < 0.05). Postprandial systemic tissue glucose uptake was also increased in the diabetic subjects (82.3 +/- 4.7 vs. 69.8 +/- 3.5 g, P < 0.05), and its distribution was altered; renal glucose uptake was increased (21.0 +/- 3.5 vs. 9.8 +/- 2.3 g, P < 0.03), whereas muscle glucose uptake was normal (18.5 +/- 1.8 vs. 25.9 +/- 3.3 g, P = 0.16). We conclude that, in T2DM, 1) both liver and kidney contribute to postprandial overproduction of glucose, and 2) postprandial renal glucose uptake is increased, resulting in a shift in the relative importance of muscle and kidney for glucose disposal. The latter may provide an explanation for the renal glycogen accumulation characteristic of diabetes mellitus as well as a mechanism by which hyperglycemia may lead to diabetic nephropathy.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Administration, Oral
  • Arteries
  • Blood Glucose / metabolism
  • Case-Control Studies
  • Diabetes Mellitus, Type 2 / blood
  • Diabetes Mellitus, Type 2 / metabolism*
  • Female
  • Forearm
  • Gluconeogenesis
  • Glucose / administration & dosage*
  • Glucose / metabolism*
  • Glucose / pharmacology
  • Humans
  • Insulin / blood
  • Kidney / metabolism*
  • Liver / metabolism*
  • Male
  • Middle Aged
  • Muscle, Skeletal / metabolism*
  • Osmolar Concentration

Substances

  • Blood Glucose
  • Insulin
  • Glucose