Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Dev Biol. 2004 Sep 1;273(1):38-47.

Fraenkel's pupariation factor identified at last.

Author information

  • 1Laboratory of Developmental Physiology, Genomics and Proteomics, KU Leuven, B-3000 Louvain, Belgium. peter.verleyen@bio.kuleuven.ac.be

Abstract

Thirty-five years ago, Zdarek and Fraenkel demonstrated that nervous tissue extracts influenced development by accelerating pupariation in the grey flesh fly, Neobellieria bullata. We have now identified this pupariation factor as SVQFKPRLamide, designated Neb-pyrokinin-2 (Neb-PK-2). To achieve this, the central nervous system of N. bullata wandering stage larvae, that is, preceding pupariation, were dissected and extracted before HPLC separation. Chromatographic fractions were screened with a bioassay for pupariation accelerating activity. Only one fraction showed huge pupariation activity. Mass spectrometry revealed the presence of a pyrokinin, whose primary sequence could not be unequivocally determined by tandem mass spectrometry. However, this Neb-pyrokinin appeared to be very prominent in the ring gland from which it was subsequently purified and identified. Synthetic Neb-PK-2 accelerates pupariation with a threshold dose of only 0.2 pmol and therefore, Neb-pyrokinin is considered to be the genuine pupariation factor. The immunohistochemical distribution pattern of Neb-PK-2 is very similar to that of Drosophila pyrokinin-2, from which it differs by only one amino acid residue. Hence, the recently identified G-protein coupled receptors (CG8784, CG8795) for Drosophila pyrokinin-2 might play an important role in puparium formation.

PMID:
15302596
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk