Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2004 Oct 22;279(43):44362-9. Epub 2004 Aug 5.

A two-component flavin-dependent monooxygenase involved in actinorhodin biosynthesis in Streptomyces coelicolor.

Author information

  • 1Laboratoire de Chimie et Biochimie des Centres Redox Biologiques, DRDC-CEA/CNRS/UniversitéJoseph Fourier, 17 Avenue des Martyrs, 38054 Grenoble 9, France.


The two-component flavin-dependent monooxygenases belong to an emerging class of enzymes involved in oxidation reactions in a number of metabolic and biosynthetic pathways in microorganisms. One component is a NAD(P)H:flavin oxidoreductase, which provides a reduced flavin to the second component, the proper monooxygenase. There, the reduced flavin activates molecular oxygen for substrate oxidation. Here, we study the flavin reductase ActVB and ActVA-ORF5 gene product, both reported to be involved in the last step of biosynthesis of the natural antibiotic actinorhodin in Streptomyces coelicolor. For the first time we show that ActVA-ORF5 is a FMN-dependent monooxygenase that together with the help of the flavin reductase ActVB catalyzes the oxidation reaction. The mechanism of the transfer of reduced FMN between ActVB and ActVA-ORF5 has been investigated. Dissociation constant values for oxidized and reduced flavin (FMNox and FMNred) with regard to ActVB and ActVA-ORF5 have been determined. The data clearly demonstrate a thermodynamic transfer of FMNred from ActVB to ActVA-ORF5 without involving a particular interaction between the two protein components. In full agreement with these data, we propose a reaction mechanism in which FMNox binds to ActVB, where it is reduced, and the resulting FMNred moves to ActVA-ORF5, where it reacts with O2 to generate a flavinperoxide intermediate. A direct spectroscopic evidence for the formation of such species within ActVA-ORF5 is reported.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk