Send to:

Choose Destination
See comment in PubMed Commons below
Biochem J. 2004 Nov 15;384(Pt 1):87-92.

Mutational analysis of histidine residues in human organic anion transporter 4 (hOAT4).

Author information

  • 1Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.


Human organic anion transporter 4 (hOAT4) belongs to a family of organic anion transporters which play critical roles in the body disposition of clinically important drugs, including anti-HIV therapeutics, antitumour drugs, antibiotics, anti-hypertensives and anti-inflammatories. hOAT4-mediated transport of the organic anion oestrone sulphate in COS-7 cells was inhibited by the histidine-modifying reagent DEPC (diethyl pyrocarbonate). Therefore the role of histidine residues in the function of hOAT4 was examined by site-directed mutagenesis. All five histidine residues of hOAT4 were converted into alanine, singly or in combination. Single replacement of His-47, or simultaneous replacement of His-47/52/83 or His-47/52/83/305/469 (H-less) led to a 50-80% decrease in transport activity. The decreased transport activity of these mutants was correlated with a decreased amount of cell-surface expression, although the total cell expression of these mutants was similar to that of wild-type hOAT4. These results suggest that mutation at positions 47, 47/52/83 and 47/52/83/305/469 impaired membrane expression rather than function. We also showed that, although most of the histidine mutants of hOAT4 were sensitive to inhibition by DEPC, H469A (His-469-->Ala) was completely insensitive to inhibition by this reagent. Therefore modification of His-469 is responsible for the inhibition of hOAT4 by DEPC.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk