Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Circulation. 2004 Aug 10;110(6):700-4. Epub 2004 Aug 2.

Targeted inactivation of cystic fibrosis transmembrane conductance regulator chloride channel gene prevents ischemic preconditioning in isolated mouse heart.

Author information

  • 1Department of Pharmacology, Center of Biomedical Research Excellence, University of Nevada School of Medicine, Reno, NV 89557-0270, USA.

Abstract

BACKGROUND:

Recent evidence suggests that chloride channels may be involved in ischemic preconditioning (IPC). In this study, we tested whether the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels, which are expressed in the heart and activated by protein kinase A and protein kinase C, are important for IPC in isolated heart preparations from wild-type (WT) and CFTR knockout (CFTR-/-) mice.

METHODS AND RESULTS:

Hearts were isolated from age-matched WT or CFTR-/- (B6.129P2-Cftr(tm1Unc) and STOCKCftr(tm1Unc)-TgN 1Jaw) mice and perfused in the Langendorff or working-heart mode. All hearts were allowed to stabilize for 10 minutes before they were subjected to 30 or 45 minutes of global ischemia followed by 40 minutes of reperfusion (control group) or 3 cycles of 5 minutes of ischemia and reperfusion (IPC group) before 30 or 45 minutes of global ischemia and 40 minutes of reperfusion. Hemodynamic indices were recorded to evaluate cardiac functions. Release of creatine phosphate kinase (CPK) in the samples of coronary effluent and infarct size of the ventricles were used to estimate myocardial tissue injury. In WT adult hearts, IPC protected cardiac function during reperfusion and significantly decreased ischemia-induced CPK release and infarct size. A selective CFTR channel blocker, gemfibrozil, abrogated the protective effect of IPC. Furthermore, targeted inactivation of the CFTR gene in 2 different strains of CFTR-/- mice also prevented IPC's protection of cardiac function and myocardial injury against sustained ischemia.

CONCLUSIONS:

CFTR Cl- channels may serve as novel and crucial mediators in mouse heart IPC.

PMID:
15289377
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk