Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Nutr. 2004 Aug;134(8):1948-52.

Piperine enhances the bioavailability of the tea polyphenol (-)-epigallocatechin-3-gallate in mice.

Author information

  • 1Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA. joshua_lambert@hotmail.com

Abstract

(-)-Epigallocatechin-3-gallate (EGCG), from green tea (Camellia sinensis), has demonstrated chemopreventive activity in animal models of carcinogenesis. Previously, we reported the bioavailability of EGCG in rats (1.6%) and mice (26.5%). Here, we report that cotreatment with a second dietary component, piperine (from black pepper), enhanced the bioavailability of EGCG in mice. Intragastric coadministration of 163.8 micromol/kg EGCG and 70.2 micromol/kg piperine to male CF-1 mice increased the plasma C(max) and area under the curve (AUC) by 1.3-fold compared to mice treated with EGCG only. Piperine appeared to increase EGCG bioavailability by inhibiting glucuronidation and gastrointestinal transit. Piperine (100 micromol/L) inhibited EGCG glucuronidation in mouse small intestine (by 40%) but not in hepatic microsomes. Piperine (20 micromol/L) also inhibited production of EGCG-3"-glucuronide in human HT-29 colon adenocarcinoma cells. Small intestinal EGCG levels in CF-1 mice following treatment with EGCG alone had a C(max) = 37.50 +/- 22.50 nmol/g at 60 min that then decreased to 5.14 +/- 1.65 nmol/g at 90 min; however, cotreatment with piperine resulted in a C(max) = 31.60 +/- 15.08 nmol/g at 90 min, and levels were maintained above 20 nmol/g until 180 min. This resulted in a significant increase in the small intestine EGCG AUC (4621.80 +/- 1958.72 vs. 1686.50 +/- 757.07 (nmol/g.min)). EGCG appearance in the colon and the feces of piperine-cotreated mice was slower than in mice treated with EGCG alone. The present study demonstrates the modulation of the EGCG bioavailablity by a second dietary component and illustrates a mechanism for interactions between dietary chemicals.

PMID:
15284381
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk