Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Biol Evol. 2004 Nov;21(11):2058-70. Epub 2004 Jul 28.

Conservation and coevolution in the scale-free human gene coexpression network.

Author information

  • 1National Center for Biotechnology Information, National Institutes of Health Bethesda, Maryland, USA.

Abstract

The role of natural selection in biology is well appreciated. Recently, however, a critical role for physical principles of network self-organization in biological systems has been revealed. Here, we employ a systems level view of genome-scale sequence and expression data to examine the interplay between these two sources of order, natural selection and physical self-organization, in the evolution of human gene regulation. The topology of a human gene coexpression network, derived from tissue-specific expression profiles, shows scale-free properties that imply evolutionary self-organization via preferential node attachment. Genes with numerous coexpressed partners (the hubs of the coexpression network) evolve more slowly on average than genes with fewer coexpressed partners, and genes that are coexpressed show similar rates of evolution. Thus, the strength of selective constraints on gene sequences is affected by the topology of the gene coexpression network. This connection is strong for the coding regions and 3' untranslated regions (UTRs), but the 5' UTRs appear to evolve under a different regime. Surprisingly, we found no connection between the rate of gene sequence divergence and the extent of gene expression profile divergence between human and mouse. This suggests that distinct modes of natural selection might govern sequence versus expression divergence, and we propose a model, based on rapid, adaptation-driven divergence and convergent evolution of gene expression patterns, for how natural selection could influence gene expression divergence.

PMID:
15282333
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk