Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Cell Biol. 2004 Aug 2;166(3):347-57. Epub 2004 Jul 26.

Muscle satellite cells adopt divergent fates: a mechanism for self-renewal?

Author information

  • 1Muscle Cell Biology Group, Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Hospital Campus, Du Cane Rd., London W12 0NN, UK. peter.zammit@csc.mrc.ac.uk

Abstract

Growth, repair, and regeneration of adult skeletal muscle depends on the persistence of satellite cells: muscle stem cells resident beneath the basal lamina that surrounds each myofiber. However, how the satellite cell compartment is maintained is unclear. Here, we use cultured myofibers to model muscle regeneration and show that satellite cells adopt divergent fates. Quiescent satellite cells are synchronously activated to coexpress the transcription factors Pax7 and MyoD. Most then proliferate, down-regulate Pax7, and differentiate. In contrast, other proliferating cells maintain Pax7 but lose MyoD and withdraw from immediate differentiation. These cells are typically located in clusters, together with Pax7-ve progeny destined for differentiation. Some of the Pax7+ve/MyoD-ve cells then leave the cell cycle, thus regaining the quiescent satellite cell phenotype. Significantly, noncycling cells contained within a cluster can be stimulated to proliferate again. These observations suggest that satellite cells either differentiate or switch from terminal myogenesis to maintain the satellite cell pool.

PMID:
15277541
[PubMed - indexed for MEDLINE]
PMCID:
PMC2172269
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk