Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Biochemistry. 2004 Aug 3;43(30):9877-87.

Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases.

Author information

  • 1Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706-1532, USA.

Abstract

The Silent information regulator 2 (Sir2) family of enzymes consists of NAD(+)-dependent histone/protein deacetylases that tightly couple the hydrolysis of NAD(+) and the deacetylation of an acetylated substrate to form nicotinamide, the deacetylated product, and the novel metabolite O-acetyl-ADP-ribose (OAADPR). In this paper, we analyzed the substrate specificity of the yeast Sir2 (ySir2), the yeast HST2, and the human SIRT2 homologues toward various monoacetylated histone H3 and H4 peptides, determined the basic kinetic mechanism, and resolved individual chemical steps of the Sir2 reaction. Using steady-state kinetic analysis, we have shown that ySir2, HST2, and SIRT2 exhibit varying catalytic efficiencies and display a preference among the monoacetylated peptide substrates. Bisubstrate kinetic analysis indicates that Sir2 enzymes follow a sequential mechanism, where both the acetylated substrate and NAD(+) must bind to form a ternary complex, prior to any catalytic step. Using rapid-kinetic analysis, we have shown that after ternary complex formation, nicotinamide cleavage occurs first, followed by the transfer of the acetyl group from the donor substrate to the ADP-ribose portion of NAD(+) to form OAADPr and the deacetylated product. Product and dead-end inhibition analyses revealed that nicotinamide is the first product released followed by random release of OAADPr and the deacetylated product.

PMID:
15274642
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk