Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2004 Oct 1;279(40):41783-91. Epub 2004 Jul 22.

Interleukin-13 stimulates the transcription of the human alpha2(I) collagen gene in human dermal fibroblasts.

Author information

  • 1Department of Dermatology, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.

Abstract

Interleukin (IL)-13 is a novel lymphokine produced by activated Type 2 helper cells. In this study, we examined the target genes of IL-13 by the cDNA microarray analysis in human dermal fibroblasts. We focused on the human alpha2(I) collagen gene, which was one of the IL-13-induced genes by the microarray analysis. IL-13 induced type I collagen protein as well as mRNA in a dose-dependent manner. Actinomycin D, an RNA synthesis inhibitor, significantly blocked the IL-13-mediated up-regulation of alpha2(I) collagen mRNA expression, whereas cycloheximide, a protein synthesis inhibitor, did not block this up-regulation. In addition, IL-13 treatment induced the promoter activity of alpha2(I) collagen by nuclear run-on transcription assay and chloramphenicol acetyltransferase assay. IL-13-mediated transcriptional activation of alpha2(I) collagen gene or type I collagen protein up-regulation was inhibited by the treatment of fibroblasts with a selective phosphoinositide 3-kinase (PI3K) inhibitor, LY294002, or STAT6 antisense oligonucleotide, but not by PD98059, a specific inhibitor of MEK/ERK, or SB202190 or SB203580, specific inhibitors of p38 MAPK; IL-13 induced the phosphorylation of PI3K p85 regulatory subunit and STAT6. These results suggest that IL-13 may play a role in the regulation of extracellular matrix and indicate the possible therapeutic value of the blockade of IL-13 signaling pathways via PI3K and STAT6 in fibrosis.

PMID:
15271999
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk