Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Chem Phys. 2004 Jan 15;120(3):1292-305.

Franck-Condon simulation of the single vibronic level emission spectra of HSiF and DSiF including anharmonicity.

Author information

  • 1Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong. bcdaniel@polyu.edu.hk

Abstract

Potential energy functions (PEFs) of the X (1)A(') and A (1)A(") states of HSiF have been computed using the coupled-cluster single-double plus perturbative triple excitations and complete-active-space self-consistent-field multireference internally contracted configuration interaction methods, respectively, employing augmented correlation-consistent polarized-valence quadruple-zeta basis sets. For both electronic states of HSiF and DSiF, anharmonic vibrational wavefunctions and energies of all three modes have been calculated variationally with the ab initio PEFs and using Watson's Hamiltonian for nonlinear molecules. Franck-Condon factors between the two electronic states, allowing for Duschinsky rotation, were computed using the calculated anharmonic vibrational wavefunctions. These Franck-Condon factors were used to simulate the single vibronic level (SVL) emission spectra recently reported by Hostutler et al. in J. Chem. Phys. 114, 10728 (2001). Excellent agreement between the simulated and observed spectra was obtained for the A (1)A(")(1,0,0)-->X (1)A(') SVL emission of HSiF. Discrepancies between the simulated and observed spectra of the A (1)A(")(0,1,0) and (1,1,0) SVL emissions of HSiF have been found. These are most likely, partly due to experimental deficiencies and, partly to inadequacies in the ab initio levels of theory employed in the calculation of the PEFs. Based on the computed Franck-Condon factors, minor revisions of previous vibrational assignments are suggested. The calculated anharmonic wave functions of higher vibrational levels of the X (1)A(') state show strong mixings between the three vibrational modes of HSi stretching, bending, and SiF stretching.

PMID:
15268255
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Institute of Physics
    Loading ...
    Write to the Help Desk