Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
J Chem Phys. 2004 Jun 8;120(22):10807-14.

Optical properties of passivated silicon nanoclusters: the role of synthesis.

Author information

  • 1Lawrence Livermore National Laboratory, Livermore, California 94550, USA.


The effect of preparation conditions on the structural and optical properties of silicon nanoparticles is investigated. Nanoscale reconstructions, unique to curved nanosurfaces, are presented for silicon nanocrystals and shown to have lower energy and larger optical gaps than bulk-derived structures. We find that high-temperature synthesis processes can produce metastable noncrystalline nanostructures with different core structures than bulk-derived crystalline clusters. The type of core structure that forms from a given synthesis process may depend on the passivation mechanism and time scale. The effect of oxygen on the optical of different types of silicon structures is calculated. In contrast to the behavior of bulklike nanostructures, for noncrystalline and reconstructed crystalline structures surface oxygen atoms do not decrease the gap. In some cases, the presence of oxygen atoms at the nanocluster surface can significantly increase the optical absorption gap, due to decreased angular distortion of the silicon bonds. The relationship between strain and the optical gap in silicon nanoclusters is discussed.

(c) 2004 American Institute of Physics.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Institute of Physics
    Loading ...
    Write to the Help Desk