Format

Send to:

Choose Destination
See comment in PubMed Commons below
Exp Cell Res. 2004 Aug 15;298(2):661-73.

BARD1 regulates BRCA1 apoptotic function by a mechanism involving nuclear retention.

Author information

  • 1Westmead Institute for Cancer Research, Westmead Millennium Institute at Westmead Hospital, University of Sydney, Westmead, 2145 New South Wales, Australia.

Abstract

BRCA1 is involved in maintaining genomic integrity and, as a regulator of the G2/M checkpoint, contributes to DNA repair and cell survival. The overexpression of BRCA1 elicits diverse cellular responses including apoptosis due to the stimulation of specific signaling pathways. BRCA1 is normally regulated by protein turnover, but is stabilized by BARD1 which can recruit BRCA1 to the nucleus to form a ubiquitin E3 ligase complex involved in DNA repair or cell survival. Here, we identify BARD1 as a regulator of BRCA1-dependent apoptosis. Using transfected MCF-7 breast cancer cells, we found that BRCA1-induced apoptosis was independent of p53 and was stimulated by BRCA1 nuclear export. Conversely, BARD1 reduced BRCA1-dependent apoptosis by a mechanism involving nuclear sequestration. Regulation of apoptosis by BARD1 was reduced by BRCA1 cancer mutations that disrupt Ub ligase function. Transfection of BRCA1 N-terminal peptides that disrupted the cellular BRCA1-BARD1 interaction caused a loss of nuclear BRCA1 that correlated with increased apoptosis in single cell assays, but did not alter localization or expression of endogenous BARD1. Reducing BARD1 levels by siRNA caused a small increase in apoptosis. Our findings identify a novel apoptosis inhibitory function of BARD1 and suggest that nuclear retention of BRCA1-BARD1 complexes contributes to both DNA repair and cell survival.

PMID:
15265711
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk