Display Settings:


Send to:

Choose Destination
Exp Cell Res. 2004 Aug 15;298(2):485-98.

The mammalian verprolin homologue WIRE participates in receptor-mediated endocytosis and regulation of the actin filament system by distinct mechanisms.

Author information

  • Ludwig Institute for Cancer Research, Biomedical Research, S-751 24 Uppsala, Sweden. pontus.aspenstrom@LICR.uu.se


The mammalian verprolin family consists of three family members: WIP, WIRE and CR16. WIRE was recently found to bind to WASP and N-WASP and to have roles in regulating actin dynamics downstream of the platelet-derived growth factor beta-receptor. In the current study, the WASP-binding domain of WIRE was identified, with the core of the binding motif encompassing amino acid residues 408-412. A stretch of aromatic amino acid residues close to the core motif also participates in WASP binding. Amino acid substitutions in each of these motifs abrogated WASP binding, suggesting that both motifs are involved in the binding of WIRE to WASP. Interestingly, WIRE mutants unable to bind WASP were still able to induce a reorganisation of the actin filament system, indicating that WASP did not participate in the signalling pathway that link WIRE to actin dynamics. In cells ectopically expressing WIRE, the endocytosis of the platelet-derived growth factor beta-receptor was drastically reduced. However, in contrast to the effect on the actin filament system, the WIRE-induced ablation of the receptor endocytosis required an intact WASP-binding domain. Moreover, WIRE was more efficient than WIP in inhibiting the receptor endocytosis, implicating that these two mammalian verprolins have distinct roles in mammalian cells.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk