Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Bioinformatics. 2004 Aug 4;20 Suppl 1:i326-33.

Learning kernels from biological networks by maximizing entropy.

Author information

  • 1Max Planck Institute for Biological Cybernetics, Tübingen, Germany.



The diffusion kernel is a general method for computing pairwise distances among all nodes in a graph, based on the sum of weighted paths between each pair of nodes. This technique has been used successfully, in conjunction with kernel-based learning methods, to draw inferences from several types of biological networks.


We show that computing the diffusion kernel is equivalent to maximizing the von Neumann entropy, subject to a global constraint on the sum of the Euclidean distances between nodes. This global constraint allows for high variance in the pairwise distances. Accordingly, we propose an alternative, locally constrained diffusion kernel, and we demonstrate that the resulting kernel allows for more accurate support vector machine prediction of protein functional classifications from metabolic and protein-protein interaction networks.


Supplementary results and data are available at noble.gs.washington.edu/proj/maxent

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk