Format

Send to

Choose Destination
See comment in PubMed Commons below
Haematologica. 2004 Jul;89(7):837-44.

Mesenchymal stem/progenitor cells in human umbilical cord blood as support for ex vivo expansion of CD34(+) hematopoietic stem cells and for chondrogenic differentiation.

Author information

  • 1College of Life Sciences, Zhejiang University, No. 232, Wen San Road, Hangzhou, Zhejiang 310012, PR China. wjfu@zju.edu.cn

Abstract

BACKGROUND AND OBJECTIVES:

Human mesenchymal stem/progenitor cells (MSPC) ar pluripotent, being the precursors for marrow stroma, bone, cartilage, muscle and connective tissues. Although the presence of hematopoietic stem/progenitor cells (HSPC) in umbilical cord blood (UCB) is well known, that of MSPC has been not fully evaluated.

DESIGN AND METHODS:

In this study, we examined the immunophenotype, the supporting function in relation to ex vivo expansion of hematopoietic stem progenitor cells and the chondrogenic differentiation of cultured cells with characteristics of MSPC from UCB. When UCB nucleated cells were isolated and 107 cells cultured in IMDM with 20% fetal bovine serum, the mean number of adherent fibroblastlike colonies was 3.5+/-0.7/10(6) monuclear cells.

RESULTS:

UCB-derived MSPC could be expanded for at least 15 passages. In their undifferentiated state, UCB-derived MSPC were CD13(+), CD29(+), CD90(+), CD105(+), CD166(+), SH2(+), SH3(+), SH4(+), CD45(-), CD34(-), and CD14(-); they produced stem cell factor, interleukin 6 and tumor necrosis factor alpha. UCB-derived MSPC cultured in chondrogenic media differentiated into chondrogenic cells. UCB-derived MSPC supported the proliferation and differentiation of CD34(+) cells from UCB in vitro.

INTERPRETATION AND CONCLUSIONS:

UCB-derived MSPC have the potential to support ex vivo expansion of HSPC and chondrogenic differentiation. UCB should not be regarded as medical waste. It can serve as an alternative source of mesenchymal stem cells and may provide a unique source of fetal cells for cellular and gene therapy.

PMID:
15257936
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk