Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2004 Jul 15;64(14):4699-702.

Impaired angiogenesis, delayed wound healing and retarded tumor growth in perlecan heparan sulfate-deficient mice.

Author information

  • 1Department of Biochemistry, Faculty of Medicine, University of Hong Kong, 21 Sassoon Road, Hong Kong, ROC. zhongjun@hkucc.hku.hk

Abstract

Perlecan, a modular proteoglycan carrying primary heparan sulfate (HS) side chains, is a major component of blood vessel basement membranes. It sequesters growth factors such as fibroblast growth factor 2 (FGF-2) and regulates the ligand-receptor interactions on the cell surface, and thus it has been implicated in the control of angiogenesis. Both stimulatory and inhibitory effects of perlecan on FGF-2 signaling have been reported. To understand the in vivo function of HS carried by perlecan, the perlecan gene heparan sulfate proteoglycan 2 (Hspg2) was mutated in mouse by gene targeting. The HS at the NH(2) terminus of perlecan was removed while the core protein remained intact. Perlecan HS-deficient (Hspg2(Delta3/Delta3)) mice survived embryonic development and were apparently healthy as adults. However, mutant mice exhibited significantly delayed wound healing, retarded FGF-2-induced tumor growth, and defective angiogenesis. In the mouse corneal angiogenesis model, FGF-2-induced neovascularization was significantly impaired in Hspg2(Delta3/Delta3) mutant mice. Our results suggest that HS in perlecan positively regulates the angiogenesis in vivo.

PMID:
15256433
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk