Send to:

Choose Destination
See comment in PubMed Commons below
Mol Biol Cell. 2004 Oct;15(10):4609-21. Epub 2004 Jul 14.

Enhanced membrane fusion in sterol-enriched vacuoles bypasses the Vrp1p requirement.

Author information

  • 1Department of Cell Biology, University of Alberta, Edmonton, Alberta, T6G 2H7 Canada.


Organization of lipids into membrane microdomains is a vital mechanism of protein processing. Here we show that overexpression of ERG6, a gene involved in ergosterol synthesis, elevates sterol levels 1.5-fold on the vacuole membrane and enhances their homotypic fusion. The mechanism of sterol-enhanced fusion is not via more efficient sorting, but instead promotes increased kinetics of fusion subreactions. We initially isolated ERG6 as a suppressor of a vrp1Delta growth defect selective for vacuole function. VRP1 encodes verprolin, an actin-binding protein that colocalizes to vacuoles. The vrp1Delta mutant has fragmented vacuoles in vivo and isolated vacuoles do not fuse in vitro, indicative of a Vrp1p requirement for membrane fusion. ERG6 overexpression rescues vrp1Delta vacuole fusion in a cytosol-dependent manner. Cytosol prepared from the vrp1Delta strain remains active; therefore, cytosol is not resupplying Vrp1p. Las17p (Vrp1p functional partner) antibodies, which inhibit wild-type vacuole fusion, do not inhibit the fusion of vacuoles from the vrp1Delta-ERG6 overexpression strain. Vacuole-associated actin turnover is decreased in the vrp1Delta strain, but recovered by ERG6 overexpression linking sterol enrichment to actin remodeling. Therefore, the Vrp1p/Las17p requirement for membrane fusion is bypassed by increased sterols, which promotes actin remodeling as part the membrane fusion mechanism.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk