Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Proc Natl Acad Sci U S A. 2004 Jul 20;101(29):10644-9. Epub 2004 Jul 9.

Protozoan predation, diversifying selection, and the evolution of antigenic diversity in Salmonella.

Author information

  • 1Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15235, USA.

Abstract

Extensive population-level genetic variability at the Salmonella rfb locus, which encodes enzymes responsible for synthesis of the O-antigen polysaccharide, is thought to have arisen through frequency-dependent selection (FDS) by means of exposure of this pathogen to host immune systems. The FDS hypothesis works well for pathogens such as Haemophilus influenzae and Neisseria meningitis, which alter the composition of their O-antigens during the course of bloodborne infections. In contrast, Salmonella remains resident in epithelial cells or macrophages during infection and does not have phase variability in its O-antigen. More importantly, Salmonella shows host-serovar specificity, whereby strains bearing certain O-antigens cause disease primarily in specific hosts; this behavior is inconsistent with FDS providing selection for the origin or maintenance of extensive polymorphism at the rfb locus. Alternatively, selective pressure may originate from the host intestinal environment itself, wherein diversifying selection mediated by protozoan predation allows for the continued existence of Salmonella able to avoid consumption by host-specific protozoa. This selective pressure would result in high population-level diversity at the Salmonella rfb locus without phase variation. We show here that intestinal protozoa recognize antigenically diverse Salmonella with different efficiencies and demonstrate that differences solely in the O-antigen are sufficient to allow for prey discrimination. Combined with observations of the differential distributions of both serotypes of bacterial species and their protozoan predators among environments, our data provides a framework for the evolution of high genetic diversity at the rfb locus and host-specific pathogenicity in Salmonella.

PMID:
15247413
[PubMed - indexed for MEDLINE]
PMCID:
PMC489988
Free PMC Article

Images from this publication.See all images (5)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk