Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Exp Bot. 2004 Aug;55(404):1821-30. Epub 2004 Jul 2.

Impact of pedospheric and atmospheric sulphur nutrition on sulphur metabolism of Allium cepa L., a species with a potential sink capacity for secondary sulphur compounds.

Author information

  • 1Laboratory of Plant Physiology, University of Groningen, PO Box 14, 9750 AA Haren, The Netherlands.

Abstract

Onion (Allium cepa L.) was able to use atmospheric H(2)S as sole sulphur source for growth. The foliarly absorbed H(2)S was rapidly metabolized into water-soluble, non-protein thiol compounds, including cysteine, and subsequently into other sulphur compounds in the shoots. In H(2)S-exposed plants, the accumulation of sulphur compounds in the shoots was nearly linear with the concentration (0.15-0.6 microl l(-1)) and duration of the exposure. Exposure of onion to H(2)S for up to 1 week did not affect the sulphur content of the roots. Secondary sulphur compounds formed a sink for the foliarly absorbed sulphide, and the sulphur accumulation upon H(2)S exposure could, for a great part, be ascribed to enhancement of the content of gamma-glutamyl peptides and/or alliins. Furthermore, there was a substantial increase in the sulphate content in the shoots upon H(2)S exposure. The accumulation of sulphate originated both from the pedosphere and from the oxidation of absorbed atmospheric sulphide, and/or from the degradation of accumulated secondary sulphur compounds. From studies on the interaction between atmospheric and pedospheric sulphur nutrition it was evident that H(2)S exposure did not result in a down-regulation of the sulphate uptake by the roots.

PMID:
15234992
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk