Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Bacteriol. 2004 Jul;186(14):4730-9.

Two C-P lyase operons in Pseudomonas stutzeri and their roles in the oxidation of phosphonates, phosphite, and hypophosphite.

Author information

  • 1Department of Microbiology, University of Illinois, B103 Chemical and Life Sciences Laboratory, 601 S. Goodwin Ave., Urbana, IL 61801, USA.

Abstract

DNA sequencing and analysis of two distinct C-P lyase operons in Pseudomonas stutzeri WM88 were completed. The htxABCDEFGHIJKLMN operon encodes a hypophosphite-2-oxoglutarate dioxygenase (HtxA), whereas the predicted amino acid sequences of HtxB to HtxN are each homologous to the components of the Escherichia coli phn operon, which encodes C-P lyase, although homologs of E. coli phnF and phnO are absent. The genes in the htx operon are cotranscribed based on gene organization, and the presence of the intergenic sequences is verified by reverse transcription-PCR with total RNA. Deletion of the htx locus does not affect the ability of P. stutzeri to grow on phosphonates, indicating the presence of an additional C-P lyase pathway in this organism. To identify the genes comprising this pathway, a Deltahtx strain was mutagenized and one mutant lacking the ability to grow on methylphosphonate as the sole P source was isolated. A ca.-10.6-kbp region surrounding the transposon insertion site of this mutant was sequenced, revealing 13 open reading frames, designated phnCDEFGHIJKLMNP, which were homologous to the E. coli phn genes. Deletion of both the htx and phn operons of P. stutzeri abolishes all growth on methylphosphonate and aminoethylphosphonate. Both operons individually support growth on methylphosphonate; however, the phn operon supports growth on aminoethylphosphonate and phosphite, as well. The substrate ranges of both C-P lyases are limited, as growth on other phosphonate compounds, including glyphosate and phenylphosphonate, was not observed.

Copyright 2004 American Society for Microbiology

PMID:
15231805
[PubMed - indexed for MEDLINE]
PMCID:
PMC438566
Free PMC Article

Images from this publication.See all images (4)Free text

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk