Send to

Choose Destination
See comment in PubMed Commons below
Mutat Res. 2004 Jul 13;551(1-2):213-22.

The influence of dietary flaxseed and other grains, fruits and vegetables on the frequency of spontaneous chromosomal damage in mice.

Author information

  • 1Department of Biology, York University, 4700 Keele Street, Toronto, Ont., Canada M3J 1P3.


Spontaneous genetic damage, whether mutations or chromosomal aberrations, undoubtedly arise from a variety of sources including replication errors, oxidative damage, background radiation, and chemical exposure. Given the numerous correlations between diet and cancer, it seemed possible that diet could influence the spontaneous rate of DNA damage and its genetic consequences. Since diets high in vegetables, fruits, and grains are associated with lower rates of cancer, we supplemented the diets of mice and measured the frequency of micronuclei in the peripheral blood. Micronuclei arise from broken chromosomes or chromosome loss in the erythroblast. They are first seen in the short reticulocyte stage of the red blood cell but persist for the entire 30-day lifespan of the cell in mice. C57Bl mice were placed on a defined diet (AIN-93G) supplemented to 20% final dry weight with grains or freeze-dried fruits or vegetables. The micronucleus frequency was measured in a pre-exposure blood sample and every 2 weeks thereafter for 6 weeks. This was possible in spite of the low spontaneous frequency of 1/1000-2/1000 cells by the use of a novel flow cytometric method, which permitted the analysis of both the mature red blood cells and reticulocytes. Of the foods tested, flaxseed proved to be the most protective by reducing the incidence of micronuclei in both the reticulocyte and normochromatic erythrocyte cell populations by 30 and 11%, respectively. The results show that at least one class of spontaneous genetic damage can be modified by diet and suggests that short-term experiments with small numbers of animals can be used to identify dietary anticarcinogens that may influence human cancer rates.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk