Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2004 Jul 6;43(26):8494-502.

Modulation of mitochondrial complex I activity by reversible Ca2+ and NADH mediated superoxide anion dependent inhibition.

Author information

  • 1Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106-4970, USA.


Complex I, a key component of the mitochondrial respiratory chain, exhibits diminished activity as a result of cardiac ischemia/reperfusion. Cardiac ischemia/reperfusion is associated with increases in the levels of mitochondrial Ca(2+) and pro-oxidants. In the current in vitro study, we sought evidence for a mechanistic link between Ca(2+), pro-oxidants, and inhibition of complex I utilizing mitochondria isolated from rat heart. Our results indicate that addition of Ca(2+) to solubilized mitochondria results in loss in complex I activity. Ca(2+) induced a maximum decrease in complex I activity of approximately 35% at low micromolar concentrations over a narrow physiologically relevant pH range. Loss in activity required reducing equivalents in the form of NADH and was not reversed upon addition of EGTA. The antioxidants N-acetylcysteine and superoxide dismutase, but not catalase, prevented inhibition, indicating the involvement of superoxide anion (O2(*-)) in the inactivation process. Importantly, the sulfhydryl reducing agent DTT was capable of fully restoring complex I activity implicating the formation of sulfenic acid and/or disulfide derivatives of cysteine in the inactivation process. Finally, complex I can reactivate endogenously upon Ca(2+) removal if NADH is present and the enzyme is allowed to turnover catalytically. Thus, the present study provides a mechanistic link between three alterations known to occur during cardiac ischemia/reperfusion, mitochondrial Ca(2+) accumulation, free radical production, and complex I inhibition. The reversibility of these processes suggests redox regulation of Ca(2+) handling.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk