Format

Send to

Choose Destination
See comment in PubMed Commons below

Spatial coherence of backscatter for the nonlinearly produced second harmonic for specific transmit apodizations.

Author information

  • 1Washington University, St. Louis, MO 63130, USA. rjfedewa@ece.rochester.edu

Abstract

To be successful, correlation-based, phase-aberration correction requires a high correlation among backscattered signals. For harmonic imaging, the spatial coherence of backscatter for the second harmonic component is different than the spatial coherence of backscatter for the fundamental component. The purpose of this work was to determine the effect of changing the transmit apodization on the spatial coherence of backscatter for the nonlinearly generated second harmonic. Our approach was to determine the effective apodizations for the fundamental and second harmonic using both experimental measurements and simulations. Two-dimensional measurements of the transverse cross sections of the finite-amplitude ultrasonic fields generated by rectangular and circular apertures were acquired with a hydrophone. Three different one-dimensional transmit apodization functions were investigated: uniform, Riesz, and trapezoidal. An effective apodization was obtained for each transmit apodization by backpropagating the values measured from within the transmit focal zone using a linear angular spectrum approach. Predictions of the spatial coherence of backscatter were obtained using the pulse-echo Van Cittert-Zernike theorem. In all cases the effective apodization at 2f was narrower than the transmit apodization. We demonstrate that certain transmit apodizations result in a greater spatial coherence of backscatter at the second harmonic than at the fundamental.

PMID:
15217235
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk