Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
PLoS Biol. 2004 Jun;2(6):e153. Epub 2004 Jun 15.

A specific interface between integrin transmembrane helices and affinity for ligand.

Author information

  • 1Center for Blood Research, Institute for Biomedical Research and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.

Abstract

Conformational communication across the plasma membrane between the extracellular and intracellular domains of integrins is beginning to be defined by structural work on both domains. However, the role of the alpha and beta subunit transmembrane domains and the nature of signal transmission through these domains have been elusive. Disulfide bond scanning of the exofacial portions of the integrin alpha(IIbeta) and beta(3) transmembrane domains reveals a specific heterodimerization interface in the resting receptor. This interface is lost rather than rearranged upon activation of the receptor by cytoplasmic mutations of the alpha subunit that mimic physiologic inside-out activation, demonstrating a link between activation of the extracellular domain and lateral separation of transmembrane helices. Introduction of disulfide bridges to prevent or reverse separation abolishes the activating effect of cytoplasmic mutations, confirming transmembrane domain separation but not hinging or piston-like motions as the mechanism of transmembrane signaling by integrins.

PMID:
15208712
[PubMed - indexed for MEDLINE]
PMCID:
PMC423134
Free PMC Article

Images from this publication.See all images (7)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk