Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nat Med. 2004 Jul;10(7):739-43. Epub 2004 Jun 20.

Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity.

Author information

  • 1Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.

Abstract

Leptin is an adipocyte-derived hormone that plays a key role in energy homeostasis, yet resistance to leptin is a feature of most cases of obesity in humans and rodents. In vitro analysis suggested that the suppressor of cytokine signaling-3 (Socs3) is a negative-feedback regulator of leptin signaling involved in leptin resistance. To determine the functional significance of Socs3 in vivo, we generated neural cell-specific SOCS3 conditional knockout mice using the Cre-loxP system. Compared to their wild-type littermates, Socs3-deficient mice showed enhanced leptin-induced hypothalamic Stat3 tyrosine phosphorylation as well as pro-opiomelanocortin (POMC) induction, and this resulted in a greater body weight loss and suppression of food intake. Moreover, the Socs3-deficient mice were resistant to high fat diet-induced weight gain and hyperleptinemia, and insulin-sensitivity was retained. These data indicate that Socs3 is a key regulator of diet-induced leptin as well as insulin resistance. Our study demonstrates the negative regulatory role of Socs3 in leptin signaling in vivo, and thus suppression of Socs3 in the brain is a potential therapy for leptin-resistance in obesity.

PMID:
15208705
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk