Send to:

Choose Destination
See comment in PubMed Commons below
J Urol. 2004 Jul;172(1):349-54.

The effect of treatment strategy on stone comminution efficiency in shock wave lithotripsy.

Author information

  • 1Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708-0300, USA.



The comminution of kidney stones in shock wave lithotripsy (SWL) is a dose dependent process caused primarily by the combination of 2 fundamental mechanisms, namely stress waves and cavitation. The effect of treatment strategy with emphasis on enhancing the effect of stress waves or cavitation on stone comminution in SWL was investigated. Because vascular injury in SWL is also dose dependent, optimization of the treatment strategy may produce improved stone comminution with decreased tissue injury in SWL.


Using an in vitro experiment system that mimics stone fragmentation in the renal pelvis spherical BegoStone (Bego USA, Smithfield, Rhode Island) phantoms (diameter 10 mm) were exposed to 1,500 shocks at a pulse repetition rate of 1 Hz in an unmodified HM-3 lithotripter (Dornier Medical Systems, Kennesaw, Georgia). The 3 treatment strategies used were increasing output voltage from 18 to 20 and then to 22 kV every 500 shocks with emphasis on enhancing the effect of cavitation on medium fragments (2 to 4 mm) at the final treatment stage, decreasing output voltage from 22 to 20 and then to 18 kV every 500 shocks with emphasis on enhancing the effect of stress waves on large fragments (greater than 4 mm) at the initial treatment stage and maintaining a constant output voltage at 20 kV, as typically used in SWL procedures. Following shock wave exposure the size distribution of fragments was determined by the sequential sieving method. In addition, pressure waveforms at lithotripter focus (F2) produced at different output settings were measured using a fiber optic probe hydrophone.


The rate of stone comminution in SWL varied significantly in a dose dependent manner depending on the treatment strategies used. Specifically the comminution efficiencies produced by the 3 strategies after the initial 500 shocks were 30.7%, 59% and 41.9%, respectively. After 1,000 shocks the corresponding comminution efficiencies became similar (60.2%, 68.1% and 66.4%, respectively) with no statistically significant differences (p = 0.08). After 1,500 shocks the final comminution efficiency produced by the first strategy was 88.7%, which was better than the corresponding values of 81.2% and 83.5%, respectively, for the other 2 strategies. The difference between the final comminution efficiency of the first and second strategies was statistically significant (p = 0.005).


Progressive increase in lithotripter output voltage can produce the best overall stone comminution in vitro.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk