Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2004 Aug 20;279(34):35298-305. Epub 2004 Jun 14.

Insulin resistance due to phosphorylation of insulin receptor substrate-1 at serine 302.

Author information

  • 1Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA.

Abstract

Inhibitory serine phosphorylation is a potential molecular mechanism for insulin resistance. We have developed a new variant of the yeast two-hybrid method, referred to as disruptive yeast tri-hybrid (Y3H), to identify inhibitory kinases and sites of phosphorylation in insulin receptors (IR) and IR substrates, IRS-1. Using IR and IRS-1 as bait and prey, respectively, and c-Jun NH(2)-terminal kinase (JNK1) as the disruptor, we now show that phosphorylation of IRS-1 Ser-307, a previously identified site, is necessary but not sufficient for JNK1-mediated disruption of IR/IRS-1 binding. We further identify a new phosphorylation site, Ser-302, and show that this too is necessary for JNK1-mediated disruption. Seven additional kinases potentially linked to insulin resistance similarly block IR/IRS-1 binding in the disruptive Y3H, but through distinct Ser-302- and Ser-307-independent mechanisms. Phosphospecific antibodies that recognize sequences surrounding Ser(P)-302 or Ser(P)-307 were used to determine whether the sites were phosphorylated under relevant conditions. Phosphorylation was promoted at both sites in Fao hepatoma cells by reagents known to promote Ser/Thr phosphorylation, including the phorbol ester phorbol 12-myristate 13-acetate, anisomycin, calyculin A, and insulin. The antibodies further showed that Ser(P)-302 and Ser(P)-307 are increased in animal models of obesity and insulin resistance, including genetically obese ob/ob mice, diet-induced obesity, and upon induction of hyperinsulinemia. These findings demonstrate that phosphorylation at both Ser-302 and Ser-307 is necessary for JNK1-mediated inhibition of the IR/IRS-1 interaction and that Ser-302 and Ser-307 are phosphorylated in parallel in cultured cells and in vivo under conditions that lead to insulin resistance.

PMID:
15199052
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk