Send to

Choose Destination
See comment in PubMed Commons below
Neurobiol Dis. 2004 Jul;16(2):440-53.

Mechanisms leading to disseminated apoptosis following NMDA receptor blockade in the developing rat brain.

Author information

  • 1Department of Pediatric Neurology,Campus Virchow Klinikum, and Neuroscience Research Center, Charité, Humboldt University, 10117, Berlin, Germany.


The developing rodent brain is vulnerable to pharmacological blockade of N-methyl-d-aspartate (NMDA) receptors which can lead to severe and disseminated apoptotic neurodegeneration. Here, we show that systemic administration of the NMDA receptor antagonist MK801 to 7-day-old rats leads to impaired activity of extracellular signal-regulated kinase 1/2 (ERK1/2) and reduces levels of phosphorylated cAMP-responsive element binding protein (CREB) in brain regions which display severe apoptotic neurodegeneration. Impaired ERK1/2 and CREB activity were temporally paralleled by sustained depletion of neurotrophin expression, particularly brain-derived neurotrophic factor (BDNF). BDNF supplementation fully prevented MK801-induced neurotoxicity in immature neuronal cultures and transgenic constitutive activation of Ras was associated with marked protection against MK801-induced apoptotic neuronal death. These data indicate that uncoupling of NMDA receptors from the ERK1/2-CREB signaling pathway in vivo results in massive apoptotic deletion of neurons in the developing rodent brain.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk