Format

Send to:

Choose Destination
See comment in PubMed Commons below
IEEE Trans Med Imaging. 2004 Jun;23(6):723-37.

A Bayesian morphometry algorithm.

Author information

  • 1Department of Radiology, University of Pennsylvania, 3600 Market Street, Suite 370, Room 117, Philadelphia, PA 19104, USA. ehh@ieee.org

Abstract

Most methods for structure-function analysis of the brain in medical images are usually based on voxel-wise statistical tests performed on registered magnetic resonance (MR) images across subjects. A major drawback of such methods is the inability to accurately locate regions that manifest nonlinear associations with clinical variables. In this paper, we propose Bayesian morphological analysis methods, based on a Bayesian-network representation, for the analysis of MR brain images. First, we describe how Bayesian networks (BNs) can represent probabilistic associations among voxels and clinical (function) variables. Second, we present a model-selection framework, which generates a BN that captures structure-function relationships from MR brain images and function variables. We demonstrate our methods in the context of determining associations between regional brain atrophy (as demonstrated on MR images of the brain), and functional deficits. We employ two data sets for this evaluation: the first contains MR images of 11 subjects, where associations between regional atrophy and a functional deficit are almost linear; the second data set contains MR images of the ventricles of 84 subjects, where the structure-function association is nonlinear. Our methods successfully identify voxel-wise morphological changes that are associated with functional deficits in both data sets, whereas standard statistical analysis (i.e., t-test and paired t-test) fails in the nonlinear-association case.

PMID:
15191147
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk