Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nature. 2004 Jun 10;429(6992):661-4.

Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast.

Author information

  • 1Department of Biology and Biochemistry, University of Bath, BA2 7AY Bath, Somerset, UK.

Abstract

Under laboratory conditions 80% of yeast genes seem not to be essential for viability. This raises the question of what the mechanistic basis for dispensability is, and whether it is the result of selection for buffering or an incidental side product. Here we analyse these issues using an in silico flux model of the yeast metabolic network. The model correctly predicts the knockout fitness effects in 88% of the genes studied and in vivo fluxes. Dispensable genes might be important, but under conditions not yet examined in the laboratory. Our model indicates that this is the dominant explanation for apparent dispensability, accounting for 37-68% of dispensable genes, whereas 15-28% of them are compensated by a duplicate, and only 4-17% are buffered by metabolic network flux reorganization. For over one-half of those not important under nutrient-rich conditions, we can predict conditions when they will be important. As expected, such condition-specific genes have a more restricted phylogenetic distribution. Gene duplicates catalysing the same reaction are not more common for indispensable reactions, suggesting that the reason for their retention is not to provide compensation. Instead their presence is better explained by selection for high enzymatic flux.

PMID:
15190353
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk