Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2004 Aug 6;279(32):33273-80. Epub 2004 Jun 9.

Differential protein expression analysis of Leishmania major reveals novel roles for methionine adenosyltransferase and S-adenosylmethionine in methotrexate resistance.

Author information

  • 1Infectious Diseases Research Centre, Laval University, Quebec City, Quebec G1V 4G2, Canada.

Abstract

Leishmania is a trypanosomatid parasite causing serious disease and displaying resistance to various drugs. Here, we present comparative proteomic analyses of Leishmania major parasites that have been either shocked with or selected in vitro for high level resistance to the model antifolate drug methotrexate. Numerous differentially expressed proteins were identified by these experiments. Some were associated with the stress response, whereas others were found to be overexpressed due to genetic linkage to primary resistance mediators present on DNA amplicons. Several proteins not previously associated with resistance were also identified. The role of one of these, methionine adenosyltransferase, was confirmed by gene transfection and metabolite analysis. After a single exposure to low levels of methotrexate, L. major methionine adenosyltransferase transfectants could grow at high concentrations of the drug. Methotrexate resistance was also correlated to increased cellular S-adenosylmethionine levels. The folate and S-adenosylmethionine regeneration pathways are intimately connected, which may provide a basis for this novel resistance phenotype. This thorough comparative proteomic analysis highlights the variety of responses required for drug resistance to be achieved.

PMID:
15190060
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk