Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Annu Rev Biochem. 2004;73:589-615.

Flap endonuclease 1: a central component of DNA metabolism.

Author information

  • 1Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA. liu14@niehs.nih.gov

Abstract

One strand of cellular DNA is generated as RNA-initiated discontinuous segments called Okazaki fragments that later are joined. The RNA terminated region is displaced into a 5' single-stranded flap, which is removed by the structure-specific flap endonuclease 1 (FEN1), leaving a nick for ligation. Similarly, in long-patch base excision repair, a damaged nucleotide is displaced into a flap and removed by FEN1. FEN1 is a genome stabilization factor that prevents flaps from equilibrating into structures that lead to duplications and deletions. As an endonuclease, FEN1 enters the flap from the 5' end and then tracks to cleave the flap base. Cleavage is oriented by the formation of a double flap. Analyses of FEN1 crystal structures suggest mechanisms for tracking and cleavage. Some flaps can form self-annealed and template bubble structures that interfere with FEN1. FEN1 interacts with other nucleases and helicases that allow it to act efficiently on structured flaps. Genetic and biochemical analyses continue to reveal many roles of FEN1.

PMID:
15189154
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Write to the Help Desk