Format

Send to:

Choose Destination
See comment in PubMed Commons below
Immunogenetics. 2004 Jul;56(4):225-37. Epub 2004 Jun 5.

SNP haplotypes and allele frequencies show evidence for disruptive and balancing selection in the human leukocyte receptor complex.

Author information

  • 1Clinical Transplantation Laboratory, Guy's Hospital, 3rd Floor New Guy's House, St. Thomas' Street, London, SE1 9RT, UK. paul.norman@stanford.edu

Abstract

The human leukocyte receptor complex (LRC) of Chromosome 19q13.4 encodes polymorphic and highly homologous genes that are expressed by cells of the immune system and regulate their function. There is an enormous diversity at the LRC, most particularly the variable number of killer cell immunoglobulin-like receptor (KIR) genes. KIR have been associated with several disease processes due to their interaction with polymorphic human leukocyte antigen class I molecules. We have assessed haplotype compositions, linkage disequilibrium patterns and allele frequencies in two Caucasoid population samples (n=54, n=100), using a composite of single-nucleotide polymorphism (SNP) markers and high-resolution, allele-specific molecular genotyping. Particular KIR loci segregated with SNP and other markers, forming two blocks that were separated by a region with a greater history of recombination. The KIR haplotype composition and allele frequency distributions were consistent with KIR having been subject to balancing selection (Watterson's F: P=0.001). In contrast, there was a high inter-population heterogeneity measure for the LRC-encoded leukocyte immunoglobulin-like receptor A3 (LILRA3), indicating pathogen-driven disruptive selection (Wright's FST=0.32). An assessment of seven populations representative of African, Asian and Caucasoid ethnic groups (total n=593) provided little evidence for long-range LRC haplotypes. The different natural selection pressures acting on each locus may have contributed to a lack of linkage disequilibrium between them.

PMID:
15185041
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk