Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2004 Aug 6;279(32):33057-62. Epub 2004 Jun 4.

Effectors of lysine 4 methylation of histone H3 in Saccharomyces cerevisiae are negative regulators of PHO5 and GAL1-10.

Author information

  • 1Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843-2128, USA.

Abstract

Post-translational modifications of histone amino-terminal tails are a key determinant in gene expression. Histone methylation plays a dual role in gene regulation. Methylation of lysine 9 of histone H3 in higher eukaryotes is associated with transcriptionally inactive heterochromatin, whereas H3 lysine 4 methylation correlates with active chromatin. Methylation of lysine 4 of H3 via Set1, a component of the Saccharomyces cerevisiae COMPASS complex, is regulated by the transcriptional elongation Paf1-Rtf1 and histone ubiquitination Rad6-Bre1 complexes, which are required for the expression of a subset of genes. This suggests that lysine 4 methylation of histone H3 may play an activating role in transcription; however, the mechanism of Set1 function remains unclear. We show here that H3 lysine 4 methylation also negatively regulated gene expression, as strains without Set1 showed enhanced expression of PHO5, wherein chromatin structure plays an important transcriptional regulatory role. Di- and trimethylation of H3 lysine 4 was detected at the PHO5 promoter, and a strain expressing a mutant version of histone H3 with lysine 4 changed to arginine, (which cannot be methylated) exhibited PHO5 derepression. Moreover, PHO5 was derepressed in strains that lacked components of either the Paf1-Rtf1 elongation or Rad6-Bre1 histone ubiquitination complexes. Lastly, PHO84 and GAL1-10 transcription was also increased in set1Delta cells. These results suggest that H3 methylation at lysine 4, in conjunction with transcriptional elongation, may function in a negative feedback pathway for basal transcription of some genes, although being a positive effector at others.

PMID:
15180994
[PubMed - indexed for MEDLINE]
PMCID:
PMC3697737
Free PMC Article

Images from this publication.See all images (6)Free text

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk