Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Oecologia. 2004 Aug;140(4):551-8. Epub 2004 Jun 4.

Clinal variation in body and cell size in a widely distributed vertebrate ectotherm.

Author information

  • 1Department of Biological Sciences, University of South Carolina, 29208, Columbia, SC, USA. litzgus@biol.sc.edu

Abstract

Bergmann's rule states that, among conspecific populations, individuals are larger in cooler than in warmer environments as a consequence of selection related to heat conservation. Many of the most comprehensive assessments of Bergmann's rule to date have examined clinal patterns in body size among species assemblages. Our study is a more direct test of Bergmann's rule because we examine the pattern within a single, widely distributed species. We examined geographic variation in body and cell size in the spotted turtle ( Clemmys guttata). Our analysis of 818 turtles collected from the entire range (45-28 degrees N), indicated that body size increased with latitude; however, the relationship was driven by a population of large turtles at the northern extreme of the species' range. When the northern population was removed from the analyses, Bergmann's rule was not supported, and the smallest turtles occurred near the central part of the species' distribution. Recent literature has suggested that latitudinal clines in body size may simply be a physiological byproduct of the effects of temperature on cell division, resulting in larger cells, and hence larger organisms, from cooler temperatures. Measurements of the diameter of skin cells did not support the hypothesis that cell size increases with latitude and decreases with temperature in the spotted turtle, nor was there a significant relationship between body size and cell size. Our study suggests that neither Bergmann's rule nor cell size variation sufficiently explain the body size cline observed in the spotted turtle. We hypothesize that patterns in body size are related to variation in female size at maturity and reproductive cycles.

PMID:
15179585
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk