Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biotechnol Prog. 2004 May-Jun;20(3):706-14.

Serial 13C-based flux analysis of an L-phenylalanine-producing E. coli strain using the sensor reactor.

Author information

  • 1Institute of Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.

Abstract

With the aid of the recently developed Sensor reactor system, a series of three subsequent (13)C labeling experiments was performed mirroring the l-phenylalanine (l-Phe) production phase of a recombinant E. coli strain that was cultivated under industry-like conditions in a 300 L bioreactor. On the basis of the data from NMR labeling analysis, three subsequent flux patterns were successfully derived monitoring the l-Phe formation during an observation window from 14 to 23.3 h process time. Linear programming was performed to identify optimal flux patterns for l-Phe formation. Additionally, flux sensitivity analysis was used to identify the most promising metabolic engineering target. As a result, high rates of phosphoenolpyruvate (PEP) to pyruvate (PYR) conversion were identified as the most important reason for deterioration of the l-Phe/glucose yield from 20 to finally 11 mol %. Considering the characteristics of the enzyme kinetics involved, the working hypothesis was formulated that phosphoenolpyruvate synthase activity was increasingly hampered by rising oxaloacetate and 2-oxoglutarate concentrations, while at the same time pyruvate kinase activity arose due to activation by fructose 1,6-diphosphate. Hence, pps overexpression should be performed to optimize the existing production strain.

PMID:
15176872
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk