Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Lipid Res. 2004 Sep;45(9):1660-5. Epub 2004 Jun 1.

Polymorphisms in the ABCG5 and ABCG8 genes associate with cholesterol absorption and insulin sensitivity.

Author information

  • 1Department of Clinical Nutrition, University of Kuopio, Kuopio University Hospital, Kuopio, Finland. helena.gylling@uku.fi

Abstract

The roles of polymorphisms of the sitosterolemia genes ABCG5 and ABCG8 in the regulation of cholesterol metabolism and insulin sensitivity were studied in mildly hypercholesterolemic noncoronary subjects (n = 263, 144 men and 119 women) divided into tertiles by baseline serum cholestanol-to-cholesterol ratio (< or = 118.3 and > or = 147.7 10(2) x mmol/mol cholesterol), a surrogate marker of cholesterol absorption efficiency. The lowest cholestanol tertile was associated with high body mass index (BMI), plasma glucose, serum insulin and triglycerides, and cholesterol synthesis markers (cholestenol, desmosterol, lathosterol) and low HDL cholesterol and cholesterol absorption markers (campesterol, sitosterol) (P < 0.01 for all). The 19H allele of the ABCG8 gene accumulated in the lowest cholestanol tertile (P < 0.001) and was associated with low total and LDL cholesterol and absorption markers and with high synthesis markers (P < 0.05 for all). The 604E allele of the ABCG5 gene in men was associated with high BMI, plasma insulin, low serum sitosterol, and high serum cholestenol levels (P < 0.05 for all). In a subgroup of 71 men, the 604E allele was associated with insulin resistance measured with the hyperinsulinemic euglycemic clamp. In conclusion, low cholesterol absorption efficiency was associated with characteristics of the metabolic syndrome. Low serum cholesterol and cholesterol absorption were linked to the D19H polymorphism of the ABCG8 gene, and characteristics of the insulin resistance syndrome in men were linked with the Q604E polymorphism of the ABCG5 gene.

Copyright 2004 American Society for Biochemistry and Molecular Biology, Inc.

PMID:
15175352
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk