Format

Send to

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 2004 Jun;135(2):859-66. Epub 2004 Jun 1.

Expression of the Isochrysis C18-delta9 polyunsaturated fatty acid specific elongase component alters Arabidopsis glycerolipid profiles.

Author information

  • 1School of Biological Sciences, University of Bristol, Bristol BS8 1UG, United Kingdom. t.c.m.fraser@bristol.ac.uk

Abstract

A cDNA isolated from the prymnesiophyte micro-alga Isochrysis galbana, designated IgASE1, encodes a fatty acid elongating component that is specific for linoleic acid (C18:2n-6) and alpha-linolenic acid (C18:3n-3). Constitutive expression of IgASE1 in Arabidopsis resulted in the accumulation of eicosadienoic acid (EDA; C20:2n-6) and eicosatrienoic acid (ETrA; C20:3n-3) in all tissues examined, with no visible effects on plant morphology. Positional analysis of the various lipid classes indicated that these novel fatty acids were largely excluded from the sn-2 position of chloroplast galactolipids and seed triacylglycerol, whereas they were enriched in the same position in phosphatidylcholine. EDA and ETrA are precursors of arachidonic acid (C20:4n-6), eicosapentaenoic acid (C20:5n-3), and docosahexaenoic acid (C22:6n-3) synthesized via the so-called omega6 Delta8 desaturase and omega3 Delta8 desaturase biosynthetic pathways, respectively. The synthesis of significant quantities of EDA and ETrA in a higher plant is therefore a key step in the production of very long chain polyunsaturated fatty acid in oil-seed species. The results are further discussed in terms of prokaryotic and eukaryotic pathways of lipid synthesis in plants.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk