Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9903-8. Epub 2004 May 25.

Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics.

Author information

  • 1Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA. paterson@uga.edu

Abstract

Integration of structural genomic data from a largely assembled rice genome sequence, with phylogenetic analysis of sequence samples for many other taxa, suggests that a polyploidization event occurred approximately 70 million years ago, before the divergence of the major cereals from one another but after the divergence of the Poales from the Liliales and Zingiberales. Ancient polyploidization and subsequent "diploidization" (loss) of many duplicated gene copies has thus shaped the genomes of all Poaceae cereal, forage, and biomass crops. The Poaceae appear to have evolved as separate lineages for approximately 50 million years, or two-thirds of the time since the duplication event. Chromosomes that are predicted to be homoeologs resulting from this ancient duplication event account for a disproportionate share of incongruent loci found by comparison of the rice sequence to a detailed sorghum sequence-tagged site-based genetic map. Differential gene loss during diploidization may have contributed many of these incongruities. Such predicted homoeologs also account for a disproportionate share of duplicated sorghum loci, further supporting the hypothesis that the polyploidization event was common to sorghum and rice. Comparative gene orders along paleo-homoeologous chromosomal segments provide a means to make phylogenetic inferences about chromosome structural rearrangements that differentiate among the grasses. Superimposition of the timing of major duplication events on taxonomic relationships leads to improved understanding of comparative gene orders, enhancing the value of data from botanical models for crop improvement and for further exploration of genomic biodiversity. Additional ancient duplication events probably remain to be discovered in other angiosperm lineages.

PMID:
15161969
[PubMed - indexed for MEDLINE]
PMCID:
PMC470771
Free PMC Article

Images from this publication.See all images (3)Free text

Fig. 1.
Fig. 2.
Fig. 3.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central Icon for Faculty of 1000
    Loading ...
    Write to the Help Desk