Format

Send to:

Choose Destination
See comment in PubMed Commons below
Diabetes. 2004 Jun;53(6):1517-25.

Islet secretory defect in insulin receptor substrate 1 null mice is linked with reduced calcium signaling and expression of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)-2b and -3.

Author information

  • 1Rm. 602, Joslin Diabetes Center, One Joslin Pl., Boston MA 02215, USA. rohit.kulkarni@joslin.harvard.edu

Abstract

Mice with deletion of insulin receptor substrate (IRS)-1 (IRS-1 knockout [KO] mice) show mild insulin resistance and defective glucose-stimulated insulin secretion and reduced insulin synthesis. To further define the role of IRS-1 in islet function, we examined the insulin secretory defect in the knockouts using freshly isolated islets and primary beta-cells. IRS-1 KO beta-cells exhibited a significantly shorter increase in intracellular free Ca(2+) concentration ([Ca(2+)](i)) than controls when briefly stimulated with glucose or glyceraldehyde and when l-arginine was used to potentiate the stimulatory effect of glucose. These changes were paralleled by a lower number of exocytotic events in the KO beta-cells in response to the same secretagogues, indicating reduced insulin secretion. Furthermore, the normal oscillations in intracellular Ca(2+) and O(2) consumption after glucose stimulation were dampened in freshly isolated KO islets. Semiquantitative RT-PCR showed a dramatically reduced islet expression of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)-2b and -3 in the mutants. These data provide evidence that IRS-1 modulation of insulin secretion is associated with Ca(2+) signaling and expression of SERCA-2b and -3 genes in pancreatic islets and provides a direct link between insulin resistance and defective insulin secretion.

PMID:
15161756
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk