Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2004 Jun 1;43(21):6475-85.

An electrostatically driven conformational transition is involved in the mechanisms of substrate binding and cooperativity in cytochrome P450eryF.

Author information

  • 1Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas 77555-1031, USA. d.davydov@utmb.edu

Abstract

The effect of ionic strength (I) on substrate-induced spin transitions and cooperativity in cytochrome P450eryF was studied. At a saturating concentration of 1-pyrenebutanol (1-PB) increasing ionic strength in the 0.06-1.2 M range promotes the formation of the high-spin state of P450, which fraction increases from 26% at 0.06 M to 75% at 1.2 M. This effect was associated with a considerable decrease in cooperativity as revealed in the 1-PB-induced spin shift. While P450eryF exhibits distinct positive cooperativity (S(50) = 8.3 microM, n = 2.4) with this substrate at low ionic strength (I = 0.06 M), n decreases to 1.2 (S(50) = 3.2 microM) at I = 0.66 M. Increasing ionic strength also increases the distance between the first (effector) molecule of 1-PB and the heme, as detected by the changes in the efficiency of FRET from 1-PB to the heme. The modification of Cys(154) with 7-(diethylamino)-3-(4'-maleimidylphenyl)-4-methylcoumarin (CPM) largely suppresses these effects of ionic strength and causes a prominent decrease in the cooperativity. The same effect was observed when Cys(154) was substituted with isoleucine. Importantly, Cys(154) is located at the C-terminal end of helix E and is surrounded by salt bridges formed by arginine, glutamate, and aspartate residues located in helices D, E, F, and G. Our results suggest that the binding of the first substrate molecule causes an important conformational transition in the P450eryF that facilitates the substrate-induced spin shift. This transition is apparently accompanied by dissociation or rearrangement of several salt bridges in the proximity of Cys(154) and modulates accessibility and hydration of the heme pocket.

PMID:
15157081
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk