Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Eur J Neurosci. 2004 May;19(10):2799-807.

Dendritic spine pathology and deficits in experience-dependent dendritic plasticity in R6/1 Huntington's disease transgenic mice.

Author information

  • 1University Laboratory of Physiology, University of Oxford, Parks Road, Oxford, OX1 3PT, UK. tspires@partners.org

Abstract

Huntington's disease (HD) is a fatal neurodegenerative disease caused by a CAG repeat expansion coding for an expanded polyglutamine tract in the huntingtin protein. Dendritic abnormalities occur in human HD patients and in several transgenic mouse models of the disease. In this study, we examine, for the first time, dendrite and spine pathology in the R6/1 mouse model of HD, which mimics neurodegeneration seen in human HD. Enriching the environment of HD transgenic mice delays the onset of symptoms, so we also examine the effects of enrichment on dendrite pathology. Golgi-impregnated tissue from symptomatic R6/1 HD mice reveals a decrease in dendritic spine density and dendritic spine length in striatal medium spiny neurons and cortical pyramidal neurons. HD also causes a specific reduction in the proportion of bifurcated dendritic spines on basal dendrites of cortical pyramidal neurons. No differences in soma size, recurving distal dendrites, or dendritic branching were observed. Although home-cage environmental enrichment from 1 to 8 months of age increases spine density in wild-type mice, it has no effect on the spine pathology in HD mice. These results show that dendritic spine pathology in R6/1 HD mice resembles degenerative changes seen in human HD and in other transgenic mouse models of the disease. We thus provide further evidence that the HD mutation disrupts the connectivity in both neostriatum and cerebral cortex, which will contribute to motor and cognitive disease symptoms. Furthermore, we demonstrate that Huntington's disease pathology interferes with the normal plastic response of dendritic spines to environmental enrichment.

PMID:
15147313
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk