Chiral recognition of zinc(II) ion complexes composed of bicyclo[3.3.0] octane-2,6-diol and s-naproxen probed by collisional-induced dissociation

J Am Soc Mass Spectrom. 2004 Jun;15(6):795-802. doi: 10.1016/j.jasms.2004.02.003.

Abstract

Chiral recognition of racemic bicyclo[3.3.0] octane-2,6-diol(B) was achieved in the gas phase using s-Naproxen(A) as reference, using the kinetics of competitive unimolecule dissociation of tetrameric zinc(II)-bound complexes by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometer(ESI-FTMS). As undergoing a mild competitive collision-induced dissociation(CID) experiment with a constant pressure argon gas introduced by leak valve, the tetrameric cluster ion [A(2)B(2)Z(n)(II)-H](+) forms only two trimeric ions and R(chiral) is subsequently obtained in the kinetic method. Further studies obtained the difference of Gibbs free energy of [ABZ(n)(II)-H](+)(Delta Delta G(ABZn(II)-H](+))) by dissociating [A(2)BZ(n)(II)-H](+), resulting two fragment ions [ABZ(n)(II)-H](+) and [A(2)Z(n)(II)-H](+), which can be established to a linear relationship between Delta Delta G([ABZn(II)-H](+)) and R(chiral)' basing on the kinetic method. The value of R(chiral)' suggested that Delta Delta G([ABZn(II)-H](+)) could be regarded as zero. Meanwhile, dissociation of [AB(2)Z(n)(II)-H](+) generated only one daughter ion [ABZ(n)(II)-H](+) in a stable pressure. Thus, a linear relationship was established between the difference of Gibbs free energy of [AB(2)Z(n)(II)-H](+)(Delta Delta G([AB(2)Zn(II)-H](+))) and R(chiral)" if the Delta Delta G([ABZn(II)-H](+)) can be negligible. Because there is also a linear relationship of R(chiral) in the tetrameric ion [A(2)B(2)Z(n)(II)-H](+) and the Gibbs energy difference of trimeric cluster ion [A(2)BZ(n)(+)(II)-H](Delta Delta G([A(2)BZn(II)-H](+))) plus that of [AB(2)Z(n)(II)-H](+), Delta Delta G([A(2)BZ(n)(II)-H]+]) is easy to be calculated in the dissociation process of tetrameric ion. Stable of R(chiral), R(chiral)' and R(chiral)" under different pressures show T(eff) does not affect the chiral recognition of cluster ions in the condition selected. If an only-one-daughter-ion fragment process of [A(2)BZ(n)(II)-H](+) was existed, R(chiral)''' relating to this dissociation would be calculated just like R(chiral)" of [AB(2)Z(n)(II)-H](+) does. Conclusion was obtained that [A(2)BZ(n)(II)-H](+) makes more contribution to chiral recognition of tetrameric ion measured by kinetic method than [AB(2)Z(n)(II)-H](+) does as R(chiral)''' and R(chiral)" were applied as index to evaluate the Gibbs free energy difference of these two trimeric cluster ions. Further discussion shows that steric interactions and pi-pi stacking interactions are the major factors responsible for the observed efficient chiral recognition in this system.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Inflammatory Agents, Non-Steroidal / chemistry*
  • Bridged Bicyclo Compounds / chemistry*
  • Cations / chemistry
  • Gases / chemistry
  • Kinetics
  • Macromolecular Substances
  • Molecular Structure
  • Naproxen / chemistry*
  • Octanes / chemistry*
  • Reproducibility of Results
  • Stereoisomerism
  • Thermodynamics
  • Zinc / chemistry*

Substances

  • Anti-Inflammatory Agents, Non-Steroidal
  • Bridged Bicyclo Compounds
  • Cations
  • Gases
  • Macromolecular Substances
  • Octanes
  • bicyclo(3.3.0) octane-2,6-diol
  • Naproxen
  • Zinc
  • octane