Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information

EPR oximetry of tumors in vivo in cancer therapy.

Author information

  • 1Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia. marjeta.sentjurc@ijs.si

Abstract

The partial oxygen pressure (pO2) in tumors is considered to be one of important factors that affect the response of tumors to different treatment. Therefore, we anticipate that the information about the variation of oxygen concentration in tumors can be used as a guide for individualizing radiotherapy, chemotherapy, and especially the combined therapies. There is thus a need to obtain quantitative data on the effects of different therapies on tumor oxygenation under in vivo conditions. One of the methods, which enable these measurements is EPR oximetry. In this work basic principles of the method will be described as well as some examples of tumor oxygenation changes after application of chemotherapeutic drugs (vinblastine, cisplatin, bleomycin) or electric pulses in combination with cisplatin or bleomycin to fibrosarcoma SA-1 tumors in mice. A paramagnetic probe, a char of Bubinga tree, was implanted into the tumor (center and periphery) and in the muscle or subcutis. EPR spectra line-width, which is proportional to oxygen concentration, was measured with time after the treatments. Tumor oxygenation was reduced for 58% of pretreatment value 1 h after intraperitoneal injection of 2.5 mg kg(-1) VLB and returned to pretreatment level within 24 h. Reduction in oxygenation of muscle and subcutis was much smaller and returned to pretreatment value faster as in tumors. With cisplatin (4 mg kg(-1)) and bleomicyn (1 mg kg(-1)) the reduction was less than 15%, but increases in combined therapy to 70%. Similar reduction was observed also with electric pulses alone (eight pulses, 1300 V cm(-1), 100 micros, 1 Hz) with fast recovery of 8h. After electrochemotherapy the recovery was slower and occurs only after 48 h. This study demonstrates that EPR oximetry is a sensitive method for monitoring changes in tissue oxygenation after different treatments, which may have implications in controlling side effects of therapy and in the planning of combined treatments.

PMID:
15134738
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk