Send to:

Choose Destination
See comment in PubMed Commons below
J Org Chem. 2004 May 14;69(10):3447-52.

NiCl(2)(dppe)-catalyzed cross-coupling of aryl mesylates, arenesulfonates, and halides with arylboronic acids.

Author information

  • 1Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.


An investigation of the NiCl(2)(dppe)-, NiCl(2)(dppb)-, NiCl(2)(dppf)-, NiCl(2)(PCy(3))(2)-, and NiCl(2)(PPh(3))(2)-catalyzed cross-coupling of the previously unreported aryl mesylates, and of aryl arenesulfonates, chlorides, bromides, and iodides containing electron-withdrawing and electron-donating substituents with aryl boronic acids, in the absence of a reducing agent, is reported. NiCl(2)(dppe) was the only catalyst that exhibited high and solvent-independent activity in the two solvents investigated, toluene and dioxane. NiCl(2)(dppe) with an excess of dppe, NiCl(2)(dppe)/dppe, was reactive in the cross-coupling of electron-poor aryl mesylates, tosylates, chlorides, bromides, and iodides. This catalyst was also efficient in the cross-coupling of aryl bromides and iodides containing electron-donating substituents. Most surprisingly, the replacement of the excess dppe from NiCl(2)(dppe)/dppe with excess PPh(3) generated NiCl(2)(dppe)/PPh(3), which was found to be reactive for the cross-coupling of both electron-rich and electron-poor aryl mesylates and chlorides. Therefore, the solvent-independent reactivity of NiCl(2)(dppe) provides an inexpensive and general nickel catalyst for the cross-coupling of aryl mesylates, tosylates, chlorides, bromides, and iodides with aryl boronic acids.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk