Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2004 May 11;101(19):7427-32. Epub 2004 May 3.

Carbon nutrition of Escherichia coli in the mouse intestine.

Author information

  • 1Advanced Center for Genome Technology, Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019-0245, USA.

Abstract

Whole-genome expression profiling revealed Escherichia coli MG1655 genes induced by growth on mucus, conditions designed to mimic nutrient availability in the mammalian intestine. Most were nutritional genes corresponding to catabolic pathways for nutrients found in mucus. We knocked out several pathways and tested the relative fitness of the mutants for colonization of the mouse intestine in competition with their wild-type parent. We found that only mutations in sugar pathways affected colonization, not phospholipid and amino acid catabolism, not gluconeogenesis, not the tricarboxylic acid cycle, and not the pentose phosphate pathway. Gluconate appeared to be a major carbon source used by E. coli MG1655 to colonize, having an impact on both the initiation and maintenance stages. N-acetylglucosamine and N-acetylneuraminic acid appeared to be involved in initiation, but not maintenance. Glucuronate, mannose, fucose, and ribose appeared to be involved in maintenance, but not initiation. The in vitro order of preference for these seven sugars paralleled the relative impact of the corresponding metabolic lesions on colonization: gluconate > N-acetylglucosamine > N-acetylneuraminic acid = glucuronate > mannose > fucose > ribose. The results of this systematic analysis of nutrients used by E. coli MG1655 to colonize the mouse intestine are intriguing in light of the nutrient-niche hypothesis, which states that the ecological niches within the intestine are defined by nutrient availability. Because humans are presumably colonized with different commensal strains, differences in nutrient availability may provide an open niche for infecting E. coli pathogens in some individuals and a barrier to infection in others.

PMID:
15123798
[PubMed - indexed for MEDLINE]
PMCID:
PMC409935
Free PMC Article

Images from this publication.See all images (2)Free text

Fig. 1.
Fig. 2.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central Icon for Faculty of 1000
    Loading ...
    Write to the Help Desk