Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Appl Opt. 2004 Apr 20;43(12):2431-8.

Electromagnetic design of an all-diffractive millimeter-wave imaging system.

Author information

  • 1Department of Electrical and Computer Engineering, University of Delaware, 140 Evans Hall, Newark, Delaware 19716, USA. caihua@udel.edu


We present the design and electromagnetic analysis of an all-diffractive millimeter-wave imaging system having a field of view of +/- 15 degrees. This system consists of two 16-level diffractive lenses, with the stop in contact with the first lens. By considering the Seidel aberrations for a diffractive lens and applying the corresponding stop shift formula, we established the expressions of third-order wave aberrations for this system. By setting all primary Seidel aberrations to zero and solving the corresponding system of equations, we obtained two sets of solutions for this two-element all-diffractive system, which totally compensate for all Seidel aberrations. To assess image system performance, we apply the finite-difference time-domain technique and a vector plane-wave spectrum method, in combination, to validate the performance of the system. To reduce the computational cost and thereby enable the complete electromagnetic analysis of the system, a four-step analysis procedure has been developed and applied as an electromagnetic system model.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America
    Loading ...
    Write to the Help Desk