Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biosci Biotechnol Biochem. 2004 Apr;68(4):787-95.

Multiplicity of 2,3-dihydroxybiphenyl dioxygenase genes in the Gram-positive polychlorinated biphenyl degrading bacterium Rhodococcus rhodochrous K37.

Author information

  • 1Environmental Molecular Biology Laboratory, RIKEN Institute, Wako, Saitama, Japan.

Abstract

Rhodococcus rhodochrous K37, a Gram-positive bacterium grown under alkaline conditions, was isolated for its ability to metabolize PCBs. Analysis revealed that it has eight genes encoding extradiol dioxygenase, which has 2,3-dihydroxybiphenyl 1,2-dioxygenase activity, and these genes were designated bphC1 to bphC8. According to the classification of extradiol dioxygenases [Eltis, L. D., and Bolin, J. T., J. Bacteriol., 178, 5930-5937 (1996)], BphC3 and BphC6 belong to the type II enzyme group. The other six BphCs were classified as members of the type I extradiol dioxygenase group. BphC4 and BphC8 were classified into a new subfamily of type I, family 3. Two linear plasmids, 200 kb and 270 kb in size, were found in K37, and the bphC6 and bphC8 genes were located in the 200 kb linear plasmid. Northern hybridization analysis revealed that the bphC1, bphC2, and bphC7 genes were induced in the presence of testosterone, the bphC6 gene was induced by fluorene, and the bphC8 gene was induced by biphenyl. All eight BphC products exhibited much higher substrate activity for 2,3-dihydroxybiphenyl than for catechol, 3-methylcatechol, or 4-methylcatechol.

PMID:
15118304
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
    Loading ...
    Write to the Help Desk