Send to:

Choose Destination
See comment in PubMed Commons below
Chem Biol. 2004 Jan;11(1):127-34.

Binding of high-mannose-type oligosaccharides and synthetic oligomannose clusters to human antibody 2G12: implications for HIV-1 vaccine design.

Author information

  • 1Institute of Human Virology, University of Maryland Biotechnology Institute, University of Maryland, Baltimore, Maryland 21201, USA.


Human antibody 2G12 broadly neutralizes human immunodeficiency virus type 1 (HIV-1) isolates and shows protective activity against viral challenge in animal models. Previous mutational analysis suggested that 2G12 recognized a novel cluster of high-mannose type oligosaccharides on HIV-1 gp120. To explore the carbohydrate antigen for HIV-1 vaccine design, we have studied the binding of 2G12 to an array of HIV-1 high-mannose type oligosaccharides by competitive ELISAs and found that Man9GlcNAc is 210- and 74-fold more effective than Man5GlcNAc and Man6GlcNAc in binding to 2G12. The results establish that the larger high-mannose oligosaccharide on HIV-1 is the favorable subunit for 2G12 recognition. To mimic the putative epitope of 2G12, we have created scaffold-based multivalent Man9 clusters and found that the galactose-scaffolded bi-, tri-, and tetra-valent Man9 clusters are 7-, 22-, and 73-fold more effective in binding to 2G12 than the monomeric Man9GlcNAc2Asn. The experimental data shed light on further structural optimization of epitope mimics for developing a carbohydrate-based HIV-1 vaccine.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk